BigUInt
public struct BigUInt : UnsignedInteger
extension BigUInt: Codable
extension BigUInt: Comparable
extension BigUInt: Hashable
extension BigUInt: ExpressibleByIntegerLiteral
extension BigUInt: Strideable
extension BigUInt: ExpressibleByStringLiteral
extension BigUInt: CustomStringConvertible
extension BigUInt: CustomPlaygroundDisplayConvertible
An arbitary precision unsigned integer type, also known as a “big integer”.
Operations on big integers never overflow, but they may take a long time to execute. The amount of memory (and address space) available is the only constraint to the magnitude of these numbers.
This particular big integer type uses base-2^64 digits to represent integers; you can think of it as a wrapper
around Array<UInt64>. (In fact, BigUInt only uses an array if there are more than two digits.)
-
The type representing a digit in
BigUInt‘s underlying number system.Declaration
Swift
public typealias Word = UInt -
Initializes a new BigUInt with value 0.
Declaration
Swift
public init() -
Initializes a new BigUInt with the specified digits. The digits are ordered from least to most significant.
Declaration
Swift
public init(words: [Word])
-
Add
aandbtogether and return the result.Complexity
O(max(a.count, b.count))Declaration
Swift
public static func + (a: BigUInt, b: BigUInt) -> BigUInt -
Add
aandbtogether, and store the sum ina.Complexity
O(max(a.count, b.count))Declaration
Swift
public static func += (a: inout BigUInt, b: BigUInt) -
Declaration
Swift
public static var isSigned: Bool { get } -
Return true iff this integer is zero.
Complexity
O(1)Declaration
Swift
public var isZero: Bool { get } -
Returns
1if this value is, positive; otherwise,0.Declaration
Swift
public func signum() -> BigUIntReturn Value
The sign of this number, expressed as an integer of the same type.
-
Return the ones’ complement of
a.Complexity
O(a.count)Declaration
Swift
public prefix static func ~ (a: BigUInt) -> BigUInt -
Calculate the bitwise OR of
aandb, and store the result ina.Complexity
O(max(a.count, b.count))Declaration
Swift
public static func |= (a: inout BigUInt, b: BigUInt) -
Calculate the bitwise AND of
aandband return the result.Complexity
O(max(a.count, b.count))Declaration
Swift
public static func &= (a: inout BigUInt, b: BigUInt) -
Calculate the bitwise XOR of
aandband return the result.Complexity
O(max(a.count, b.count))Declaration
Swift
public static func ^= (a: inout BigUInt, b: BigUInt) -
Declaration
Swift
public init(from decoder: Decoder) throws -
Declaration
Swift
public func encode(to encoder: Encoder) throws
-
Compare
atoband return anNSComparisonResultindicating their order.Complexity
O(count)Declaration
Swift
public static func compare(_ a: BigUInt, _ b: BigUInt) -> ComparisonResult -
Return true iff
ais equal tob.Complexity
O(count)Declaration
Swift
public static func == (a: BigUInt, b: BigUInt) -> Bool -
Return true iff
ais less thanb.Complexity
O(count)Declaration
Swift
public static func < (a: BigUInt, b: BigUInt) -> Bool
-
Initialize a BigInt from bytes accessed from an UnsafeRawBufferPointer
Declaration
Swift
public init(_ buffer: UnsafeRawBufferPointer) -
Initializes an integer from the bits stored inside a piece of
Data. The data is assumed to be in network (big-endian) byte order.Declaration
Swift
public init(_ data: Data) -
Return a
Datavalue that contains the base-256 representation of this integer, in network (big-endian) byte order.Declaration
Swift
public func serialize() -> Data
-
Divide this integer by
yand return the resulting quotient and remainder.Requires
y > 0Complexity
O(count^2)Declaration
Swift
public func quotientAndRemainder(dividingBy y: BigUInt) -> (quotient: BigUInt, remainder: BigUInt)Return Value
(quotient, remainder)wherequotient = floor(self/y),remainder = self - quotient * y -
Divide
xbyyand return the quotient.Note
Usedivided(by:)if you also need the remainder.Declaration
Swift
public static func / (x: BigUInt, y: BigUInt) -> BigUInt -
Divide
xbyyand return the remainder.Note
Usedivided(by:)if you also need the remainder.Declaration
Swift
public static func % (x: BigUInt, y: BigUInt) -> BigUInt -
Divide
xbyyand store the quotient inx.Note
Usedivided(by:)if you also need the remainder.Declaration
Swift
public static func /= (x: inout BigUInt, y: BigUInt) -
Divide
xbyyand store the remainder inx.Note
Usedivided(by:)if you also need the remainder.Declaration
Swift
public static func %= (x: inout BigUInt, y: BigUInt)
-
Returns this integer raised to the power
exponent.This function calculates the result by successively squaring the base while halving the exponent.
Note
This function can be unreasonably expensive for large exponents, which is whyexponentis a simple integer value. If you want to calculate big exponents, you’ll probably need to use the modulo arithmetic variant.See also
BigUInt.power(_:, modulus:)Complexity
O((exponent * self.count)^log2(3)) or somesuch. The result may require a large amount of memory, too.Declaration
Swift
public func power(_ exponent: Int) -> BigUIntReturn Value
1 if
exponent == 0, otherwiseselfraised toexponent. (This implies that0.power(0) == 1.) -
Returns the remainder of this integer raised to the power
exponentin modulo arithmetic undermodulus.Uses the right-to-left binary method.
Complexity
O(exponent.count * modulus.count^log2(3)) or somesuchDeclaration
Swift
public func power(_ exponent: BigUInt, modulus: BigUInt) -> BigUInt -
Declaration
Swift
public init?<T>(exactly source: T) where T : BinaryFloatingPoint -
Declaration
Swift
public init<T>(_ source: T) where T : BinaryFloatingPoint
-
Returns the greatest common divisor of
selfandb.Complexity
O(count^2) where count = max(self.count, b.count)Declaration
Swift
public func greatestCommonDivisor(with b: BigUInt) -> BigUInt -
Returns the multiplicative inverse of this integer in modulo
modulusarithmetic, ornilif there is no such number.Requires
modulus > 1Complexity
O(count^3)Declaration
Swift
public func inverse(_ modulus: BigUInt) -> BigUInt?Return Value
If
gcd(self, modulus) == 1, the value returned is an integera < modulussuch that(a * self) % modulus == 1. Ifselfandmodulusaren’t coprime, the return value isnil.
-
Append this
BigUIntto the specified hasher.Declaration
Swift
public func hash(into hasher: inout Hasher) -
Declaration
Swift
public init?<T>(exactly source: T) where T : BinaryInteger -
Declaration
Swift
public init<T>(_ source: T) where T : BinaryInteger -
Declaration
Swift
public init<T>(truncatingIfNeeded source: T) where T : BinaryInteger -
Declaration
Swift
public init<T>(clamping source: T) where T : BinaryInteger -
Initialize a new big integer from an integer literal.
Declaration
Swift
public init(integerLiteral value: UInt64)
-
Multiply this big integer by a single word, and store the result in place of the original big integer.
Complexity
O(count)Declaration
Swift
public mutating func multiply(byWord y: Word) -
Multiply this big integer by a single Word, and return the result.
Complexity
O(count)Declaration
Swift
public func multiplied(byWord y: Word) -> BigUInt -
Multiply
xbyy, and add the result to this integer, optionally shiftedshiftwords to the left.Note
This is the fused multiply/shift/add operation; it is more efficient than doing the components individually. (The fused operation doesn’t need to allocate space for temporary big integers.)Complexity
O(count)Declaration
Swift
public mutating func multiplyAndAdd(_ x: BigUInt, _ y: Word, shiftedBy shift: Int = 0)Return Value
selfis set toself + (x * y) << (shift * 2^Word.bitWidth) -
Multiply this integer by
yand return the result.Note
This uses the naive O(n^2) multiplication algorithm unless both arguments have more thanBigUInt.directMultiplicationLimitwords.Complexity
O(n^log2(3))Declaration
Swift
public func multiplied(by y: BigUInt) -> BigUInt -
Multiplication switches to an asymptotically better recursive algorithm when arguments have more words than this limit.
Declaration
Swift
public static var directMultiplicationLimit: Int -
Multiply
abyband return the result.Note
This uses the naive O(n^2) multiplication algorithm unless both arguments have more thanBigUInt.directMultiplicationLimitwords.Complexity
O(n^log2(3))Declaration
Swift
public static func * (x: BigUInt, y: BigUInt) -> BigUInt -
Multiply
abyband store the result ina.Declaration
Swift
public static func *= (a: inout BigUInt, b: BigUInt)
-
Returns true iff this integer passes the strong probable prime test for the specified base.
Declaration
Swift
public func isStrongProbablePrime(_ base: BigUInt) -> Bool -
Returns true if this integer is probably prime. Returns false if this integer is definitely not prime.
This function performs a probabilistic Miller-Rabin Primality Test, consisting of
roundsiterations, each calculating the strong probable prime test for a random base. The number of rounds is 10 by default, but you may specify your own choice.To speed things up, the function checks if
selfis divisible by the first few prime numbers before diving into (slower) Miller-Rabin testing.Also, when
selfis less than 82 bits wide,isPrimedoes a deterministic test that is guaranteed to return a correct result.Declaration
Swift
public func isPrime(rounds: Int = 10) -> Bool -
Create a big unsigned integer consisting of
widthuniformly distributed random bits.Declaration
Swift
public static func randomInteger<RNG>(withMaximumWidth width: Int, using generator: inout RNG) -> BigUInt where RNG : RandomNumberGeneratorParameters
widthThe maximum number of one bits in the result.
generatorThe source of randomness.
Return Value
A big unsigned integer less than
1 << width. -
Create a big unsigned integer consisting of
widthuniformly distributed random bits.Note
I use a
SystemRandomGeneratorGeneratoras the source of randomness.Declaration
Swift
public static func randomInteger(withMaximumWidth width: Int) -> BigUIntParameters
widthThe maximum number of one bits in the result.
Return Value
A big unsigned integer less than
1 << width. -
Create a big unsigned integer consisting of
width-1uniformly distributed random bits followed by a one bit.Note
If
widthis zero, the result is zero.Declaration
Swift
public static func randomInteger<RNG>(withExactWidth width: Int, using generator: inout RNG) -> BigUInt where RNG : RandomNumberGeneratorParameters
widthThe number of bits required to represent the answer.
generatorThe source of randomness.
Return Value
A random big unsigned integer whose width is
width. -
Create a big unsigned integer consisting of
width-1uniformly distributed random bits followed by a one bit.Note
Ifwidthis zero, the result is zero.Note
I use a
SystemRandomGeneratorGeneratoras the source of randomness.Declaration
Swift
public static func randomInteger(withExactWidth width: Int) -> BigUIntReturn Value
A random big unsigned integer whose width is
width. -
Create a uniformly distributed random unsigned integer that’s less than the specified limit.
Precondition
limit > 0.Declaration
Swift
public static func randomInteger<RNG>(lessThan limit: BigUInt, using generator: inout RNG) -> BigUInt where RNG : RandomNumberGeneratorParameters
limitThe upper bound on the result.
generatorThe source of randomness.
Return Value
A random big unsigned integer that is less than
limit. -
Create a uniformly distributed random unsigned integer that’s less than the specified limit.
Precondition
limit > 0.Note
I use a
SystemRandomGeneratorGeneratoras the source of randomness.Declaration
Swift
public static func randomInteger(lessThan limit: BigUInt) -> BigUIntParameters
limitThe upper bound on the result.
Return Value
A random big unsigned integer that is less than
limit.
-
Undocumented
Declaration
Swift
public static func >>= <Other>(lhs: inout BigUInt, rhs: Other) where Other : BinaryInteger -
Undocumented
Declaration
Swift
public static func <<= <Other>(lhs: inout BigUInt, rhs: Other) where Other : BinaryInteger -
Undocumented
Declaration
Swift
public static func >> <Other>(lhs: BigUInt, rhs: Other) -> BigUInt where Other : BinaryInteger -
Undocumented
Declaration
Swift
public static func << <Other>(lhs: BigUInt, rhs: Other) -> BigUInt where Other : BinaryInteger
-
Returns the integer square root of a big integer; i.e., the largest integer whose square isn’t greater than
value.Declaration
Swift
public func squareRoot() -> BigUIntReturn Value
floor(sqrt(self))
-
A type that can represent the distance between two values ofa
BigUInt.Declaration
Swift
public typealias Stride = BigInt -
Adds
ntoselfand returns the result. Traps if the result would be less than zero.Declaration
Swift
public func advanced(by n: BigInt) -> BigUInt
-
Initialize a big integer from an ASCII representation in a given radix. Numerals above
9are represented by letters from the English alphabet.Requires
radix > 1 && radix < 36Declaration
Swift
public init?<S>(_ text: S, radix: Int = 10) where S : StringProtocolReturn Value
The integer represented by
text, or nil iftextcontains a character that does not represent a numeral inradix. -
Initialize a new big integer from a Unicode scalar. The scalar must represent a decimal digit.
Declaration
Swift
public init(unicodeScalarLiteral value: UnicodeScalar) -
Initialize a new big integer from an extended grapheme cluster. The cluster must consist of a decimal digit.
Declaration
Swift
public init(extendedGraphemeClusterLiteral value: String) -
Initialize a new big integer from a decimal number represented by a string literal of arbitrary length. The string must contain only decimal digits.
Declaration
Swift
public init(stringLiteral value: StringLiteralType) -
Return the decimal representation of this integer.
Declaration
Swift
public var description: String { get } -
Return the playground quick look representation of this integer.
Declaration
Swift
public var playgroundDescription: Any { get }
-
Subtract
otherfrom this integer in place, and return a flag indicating if the operation caused an arithmetic overflow.otheris shiftedshiftdigits to the left before being subtracted.Note
If the result indicates an overflow, thenselfbecomes the twos’ complement of the absolute difference.Complexity
O(count)Declaration
Swift
public mutating func subtractReportingOverflow(_ b: BigUInt, shiftedBy shift: Int = 0) -> Bool -
Subtract
otherfrom this integer, returning the difference and a flag indicating arithmetic overflow.otheris shiftedshiftdigits to the left before being subtracted.Note
Ifoverflowis true, then the result value is the twos’ complement of the absolute value of the difference.Complexity
O(count)Declaration
Swift
public func subtractingReportingOverflow(_ other: BigUInt, shiftedBy shift: Int) -> (partialValue: BigUInt, overflow: Bool) -
Subtracts
otherfromself, returning the result and a flag indicating arithmetic overflow.Note
When the operation overflows, thenpartialValueis the twos’ complement of the absolute value of the difference.Complexity
O(count)Declaration
Swift
public func subtractingReportingOverflow(_ other: BigUInt) -> (partialValue: BigUInt, overflow: Bool) -
Subtract
otherfrom this integer in place.otheris shiftedshiftdigits to the left before being subtracted.Requires
self >= other * 2^shiftComplexity
O(count)Declaration
Swift
public mutating func subtract(_ other: BigUInt, shiftedBy shift: Int = 0) -
Subtract
bfrom this integer, and return the difference.bis shiftedshiftdigits to the left before being subtracted.Requires
self >= b * 2^shiftComplexity
O(count)Declaration
Swift
public func subtracting(_ other: BigUInt, shiftedBy shift: Int = 0) -> BigUInt -
Decrement this integer by one.
Requires
!isZeroComplexity
O(count)Declaration
Swift
public mutating func decrement(shiftedBy shift: Int = 0) -
Subtract
bfromaand return the result.Requires
a >= bComplexity
O(a.count)Declaration
Swift
public static func - (a: BigUInt, b: BigUInt) -> BigUInt -
Subtract
bfromaand store the result ina.Requires
a >= bComplexity
O(a.count)Declaration
Swift
public static func -= (a: inout BigUInt, b: BigUInt) -
Undocumented
Declaration
Swift
public subscript(bitAt index: Int) -> Bool { get set } -
The minimum number of bits required to represent this integer in binary.
Complexity
O(1)Declaration
Swift
public var bitWidth: Int { get }Return Value
floor(log2(2 * self + 1))
-
The number of leading zero bits in the binary representation of this integer in base
2^(Word.bitWidth). This is useful when you need to normalize aBigUIntsuch that the top bit of its most significant word is 1.Note
0 is considered to have zero leading zero bits.See also
widthComplexity
O(1)Declaration
Swift
public var leadingZeroBitCount: Int { get }Return Value
A value in
0...(Word.bitWidth - 1). -
The number of trailing zero bits in the binary representation of this integer.
Note
0 is considered to have zero trailing zero bits.Complexity
O(count)Declaration
Swift
public var trailingZeroBitCount: Int { get }Return Value
A value in
0...width. -
Declaration
Swift
public struct Words : RandomAccessCollection -
Declaration
Swift
public var words: Words { get }
View on GitHub
Install in Dash
BigUInt Structure Reference